Exercise 05-01: Criticality classes

Exercise 1: Condensation

A condensation reaction is to be performed in a stirred tank reactor in the semi-batch mode. The solvent is acetone; the industrial charge (final reaction mass) is 2500 kg and the reaction temperature is 40 °C. The vapour tube has a diameter of 250 mm. The second reactant is added in stoichiometric amount at constant rate during two hours. Under these conditions, the maximum accumulation is 30 %.

The condenser has a cooling capacity of 200 kW.

Data:

Reaction: $Q'_r = 230 \text{ kJ} \cdot \text{kg}^{-1}$ $c_p' = 1.7 \text{ kJ} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}$ $q'_{rx} = 20 \text{ W} \cdot \text{kg}^{-1} @ 40^{\circ} \text{C}$

Decomposition: Q'_{dc}= 150 kJ·kg⁻¹ $T_{D24} = 130 \text{ }^{\circ}\text{C}$

Physical data : Acetone $T_b = 56 \, ^{\circ}\text{C}$ $\Delta \text{Hv} = 523 \, \text{kJ/kg}$ LIE: 1.6%

Questions:

- 1. Evaluate the thermal risk linked with the performance of this reaction at industrial scale
- 2. Determine the criticality class of the reaction
- 3. Are measures required to cope with the thermal risk?

05-01 Ex Crit Classes.docx 1/1